Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Front Cell Infect Microbiol ; 13: 1175996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808908

RESUMO

Hepatitis is an inflammation of the liver whose etiology is very heterogeneous. The most common cause of hepatitis is viral infections from hepatotropic viruses, including hepatitis A, B, C, D and E. However, other factors such as infections from other agents, metabolic disorders, or autoimmune reactions can also contribute to hepatitis, albeit to a lesser extent. On April 5, 2022, the United Kingdom Health Security Agency alerted the World Health Organization (WHO) on the increased incidence of severe acute hepatitis of unknown causes (not A-E) in previously healthy young children, with symptoms of liver failure that in some cases required liver transplantation. By July 2022, 1,296 cases were reported in 37 countries. Acute hepatitis of unknown causes is not an exceptional phenomenon: in fact, it represents more than 30% of cases of acute hepatitis in children, however in the present instance the large proportion of severe cases was surprising and alarming (6% of liver transplants and almost 3% mortality). Multiple hypotheses have been proposed to explain the etiology of such higher proportion of acute hepatitis, including their co-occurrence in the context of COVID-19 pandemic. This is a review of the history of a clinical threat that has put in check a world health care system highly sensitized by the current COVID-19 pandemics, and that it looks like has ended with the arguments that the severe acute pediatric hepatitis is caused by Adeno-associated virus 2 (AAV2) infection associated with a coinfection with a helper virus (human Adenovirus HAdV or human herpesvirus 6) in susceptible children carrying HLA-class II antigen HLA-DRB1*04:01.


Assuntos
COVID-19 , Hepatite , Transplante de Fígado , Humanos , Criança , Pré-Escolar , Pandemias , Doença Aguda
3.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367486

RESUMO

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Hepacivirus/genética , Mutagênicos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Genótipo , Ribavirina/uso terapêutico , Resultado do Tratamento , Quimioterapia Combinada
4.
Clin Microbiol Infect ; 29(2): 240-246, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36067943

RESUMO

OBJECTIVES: To monitor the early emergence of genetic mutations related to reduced susceptibility to monoclonal anti-body (mAb)-based treatment in immunocompromised patients with long-term viral excretion using whole-genome sequencing at a tertiary university hospital in Barcelona, Spain. METHODS: Serial severe acute respiratory syndrome coronavirus 2-positive samples (mid-December 2021-mid-March 2022) from eight immunosuppressed, fully vaccinated patients (for solid-organ transplantation or haematologic malignancies) with long-term viral excretion despite undergoing mAb therapy (sotrovimab) for coronavirus disease 2019 were selected. Whole-genome sequencing was performed following the ARTIC, version 4.1, protocol on the MiSeq platform. Mutations in the coding sequence of the spike protein with a frequency of ≥5% were studied. RESULTS: A total of 37 samples from the studied cases were analysed. All the cases, except one, were confirmed to have the Omicron variant BA.1; one had Delta (AY.100). Thirty-four different mutations were detected within the receptor-binding domain of the spike protein in 62.5% of patients, eight of which were not lineage related and located in the sotrovimab target epitope (P337L, E340D, E340R, E340K, E340V, E340Q, R346T and K356T). Except for P337L, all changes showed a significant increase in frequency or fixation after the administration of sotrovimab. Some of them have been associated with either reduced susceptibility to mAb therapy, such as those at position 340, or the acquisition of a new glycosylation site (346 and 356 positions). CONCLUSIONS: This study highlights the importance of monitoring for early in vivo selection of mutations associated with reduced susceptibility to mAb therapy, especially in immunocompromised patients receiving anti-viral drugs, whose immune response is not able to control viral replication, resulting in long-term viral shedding, and those receiving selective evolution pressure. Virologic surveillance of genetically resistant viruses to available anti-viral therapies is considered a priority for both patients and the community.


Assuntos
COVID-19 , Farmacorresistência Viral , Hospedeiro Imunocomprometido , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Eliminação de Partículas Virais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/genética , COVID-19/imunologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Farmacorresistência Viral/genética , Hospedeiro Imunocomprometido/imunologia , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/imunologia
5.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010868

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) concentrations have been described to be inversely correlated with prognosis in cancer. Mutations in HCC-associated driver genes in cfDNA have been reported, but their relation with patient's outcome has not been described. Our aim was to elucidate whether mutations found in cfDNA could be representative from those present in HCC tissue, providing the rationale to use the cfDNA to monitor HCC. METHODS: Tumoral tissue, paired nontumor adjacent tissue and blood samples were collected from 30 HCC patients undergoing curative therapies. Deep sequencing targeting HCC driver genes was performed. RESULTS: Patients with more than 2 ng/µL of cfDNA at diagnosis had higher mortality (mean OS 24.6 vs. 31.87 months, p = 0.01) (AUC = 0.782). Subjects who died during follow-up, had a significantly higher number of mutated genes (p = 0.015) and number of mutations (p = 0.015) on cfDNA. Number of mutated genes (p = 0.001), detected mutations (p = 0.001) in cfDNA and ratio (number of mutations/cfDNA) (p = 0.003) were significantly associated with recurrence. However, patients with a ratio (number of mutations/cfDNA) above 6 (long-rank p = 0.0003) presented a higher risk of recurrence than those with a ratio under 6. Detection of more than four mutations in cfDNA correlated with higher risk of death (long-rank p = 0.042). CONCLUSIONS: In summary, cfDNA and detection of prevalent HCC mutations could have prognostic implications in early-stage HCC patients.

6.
Biomedicines ; 10(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625929

RESUMO

Deletions in the 3' end region of the hepatitis B virus (HBV) X open reading frame (HBX) may affect the core promoter (Cp) and have been frequently associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the presence of variants with deletions and/or insertions (Indels) in this region in the quasispecies of 50 chronic hepatitis B (CHB) patients without HCC. We identified 103 different Indels in 47 (94%) patients, in a median of 3.4% of their reads (IQR, 1.3-8.4%), and 25% (IQR, 13.1-40.7%) of unique sequences identified in each quasispecies (haplotypes). Of those Indels, 101 (98.1%) caused 44 different altered stop codons, the most commonly observed were at positions 128, 129, 135, and 362 (putative position). Moreover, 39 (37.9%) Indels altered the TATA-like box (TA) sequences of Cp; the most commonly observed caused TA2 + TA3 fusion, creating a new putative canonical TATA box. Four (8%) patients developed negative clinical outcomes after a median follow-up of 9.4 (8.7-12) years. In conclusion, we observed variants with Indels in the HBX 3' end in the vast majority of our CHB patients, some of them encoding alternative versions of HBx with potential functional roles, and/or alterations in the regulation of transcription.

7.
Emerg Microbes Infect ; 10(1): 1777-1789, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402744

RESUMO

A common trait among RNA viruses is their high capability to acquire genetic variability due to viral and host mechanisms. Next-generation sequencing (NGS) analysis enables the deep study of the viral quasispecies in samples from infected individuals. In this study, the viral quasispecies complexity and single nucleotide polymorphisms of the SARS-CoV-2 spike gene of coronavirus disease 2019 (COVID-19) patients with mild or severe disease were investigated using next-generation sequencing (Illumina platform). SARS-CoV-2 spike variability was higher in patients with long-lasting infection. Most substitutions found were present at frequencies lower than 1%, and had an A → G or T → C pattern, consistent with variants caused by adenosine deaminase acting on RNA-1 (ADAR1). ADAR1 affected a small fraction of replicating genomes, but produced multiple, mainly non-synonymous mutations. ADAR1 editing during replication rather than the RNA-dependent RNA polymerase (nsp12) was the predominant mechanism generating SARS-CoV-2 genetic variability. However, the mutations produced are not fixed in the infected human population, suggesting that ADAR1 may have an antiviral role, whereas nsp12-induced mutations occurring in patients with high viremia and persistent infection are the main source of new SARS-CoV-2 variants.


Assuntos
COVID-19/virologia , Variação Genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Conformação Proteica , SARS-CoV-2/fisiologia , Replicação Viral
8.
Sci Rep ; 11(1): 4215, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603102

RESUMO

Patients with HBeAg-negative chronic infection (CI) have not been extensively studied because of low viremia. The HBx protein, encoded by HBX, has a key role in viral replication. Here, we analyzed the viral quasispecies at the 5' end of HBX in CI patients and compared it with that of patients in other clinical stages. Fifty-eight HBeAg-negative patients were included: 16 CI, 19 chronic hepatitis B, 16 hepatocellular carcinoma and 6 liver cirrhosis. Quasispecies complexity and conservation were determined in the region between nucleotides 1255 and 1611. Amino acid changes detected were tested in vitro. CI patients showed higher complexity in terms of mutation frequency and nucleotide diversity and higher quasispecies conservation (p < 0.05). A genotype D-specific pattern of mutations (A12S/P33S/P46S/T36D-G) was identified in CI (median frequency, 81.7%), which determined a reduction in HBV DNA release of up to 1.5 log in vitro. CI patients showed a more complex and conserved viral quasispecies than the other groups. The genotype-specific pattern of mutations could partially explain the low viremia observed in these patients.


Assuntos
Genes Virais/genética , Antígenos E da Hepatite B/genética , Vírus da Hepatite B/genética , Mutação/genética , Quase-Espécies/genética , Adulto , Idoso , Carcinoma Hepatocelular/virologia , DNA Viral/genética , Feminino , Genótipo , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/virologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Replicação Viral/genética
9.
World J Gastroenterol ; 26(20): 2584-2598, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32523313

RESUMO

BACKGROUND: Since it is currently not possible to eradicate hepatitis B virus (HBV) infection with existing treatments, research continues to uncover new therapeutic strategies. HBV core protein, encoded by the HBV core gene (HBC), intervenes in both structural and functional processes, and is a key protein in the HBV life cycle. For this reason, both the protein and the gene could be valuable targets for new therapeutic and diagnostic strategies. Moreover, alterations in the protein sequence could serve as potential markers of disease progression. AIM: To detect, by next-generation sequencing, HBC hyper-conserved regions that could potentially be prognostic factors and targets for new therapies. METHODS: Thirty-eight of 45 patients with chronic HBV initially selected were included and grouped according to liver disease stage [chronic hepatitis B infection without liver damage (CHB, n = 16), liver cirrhosis (LC, n = 5), and hepatocellular carcinoma (HCC, n = 17)]. HBV DNA was extracted from patients' plasma. A region between nucleotide (nt) 1863 and 2483, which includes HBC, was amplified and analyzed by next-generation sequencing (Illumina MiSeq platform). Sequences were genotyped by distance-based discriminant analysis. General and intergroup nt and amino acid (aa) conservation was determined by sliding window analysis. The presence of nt insertion and deletions and/or aa substitutions in the different groups was determined by aligning the sequences with genotype-specific consensus sequences. RESULTS: Three nt (nt 1900-1929, 2249-2284, 2364-2398) and 2 aa (aa 117-120, 159-167) hyper-conserved regions were shared by all the clinical groups. All groups showed a similar pattern of conservation, except for five nt regions (nt 1946-1992, 2060-2095, 2145-2175, 2230-2250, 2270-2293) and one aa region (aa 140-160), where CHB and LC, respectively, were less conserved (P < 0.05). Some group-specific conserved regions were also observed at both nt (2306-2334 in CHB and 1935-1976 and 2402-2435 in LC) and aa (between aa 98-103 in CHB and 28-30 and 51-54 in LC) levels. No differences in insertion and deletions frequencies were observed. An aa substitution (P79Q) was observed in the HCC group with a median (interquartile range) frequency of 15.82 (0-78.88) vs 0 (0-0) in the other groups (P < 0.05 vs CHB group). CONCLUSION: The differentially conserved HBC and HBV core protein regions and the P79Q substitution could be involved in disease progression. The hyper-conserved regions detected could be targets for future therapeutic and diagnostic strategies.


Assuntos
Genes Virais/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/diagnóstico , Proteínas do Core Viral/genética , Adulto , Idoso , Sequência de Bases/genética , Biomarcadores , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Sequência Conservada/genética , DNA Viral/sangue , DNA Viral/genética , DNA Viral/isolamento & purificação , Progressão da Doença , Feminino , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/sangue , Hepatite B Crônica/terapia , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sequência de DNA
10.
Infect Genet Evol ; 82: 104278, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32165244

RESUMO

RNA genetic elements include many important animal and plant pathogens. They share high mutability, a trait that has multiple implications for the interactions with their host organisms. Here we review evidence of a new adaptive feature of RNA viruses that we term "broadly diversifying selection". It constitutes a new type of positive selection without participation of any external selective agent, and which is built upon a progressive increase of the number of different genomes that dominate the population. The evidence was provided by analyses of mutant spectrum composition of two important viral pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) after prolonged replication in their respective cell culture environment. Despite being fueled by mutations that arise randomly and in absence of an external guiding selective force, this type of selection prepares the viral population for a response to selective forces still to occur. Since current evidence suggests that broadly diversifying selection is favored by elevated mutation rates and population sizes, it may constitute a more general behavior, relevant also to the adaptive dynamics of microbial populations and cancer cells.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno/fisiologia , Vírus de RNA/genética , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Genoma Viral , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Taxa de Mutação , Quase-Espécies , Vírus de RNA/fisiologia , Seleção Genética
11.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852791

RESUMO

Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes.IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.


Assuntos
Adaptação Fisiológica , Técnicas de Cultura de Células , Hepacivirus/fisiologia , Mutação , Replicação Viral , Linhagem Celular Tumoral , Humanos
12.
Virology ; 523: 100-109, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107298

RESUMO

Viral fitness quantifies the degree of virus adaptation to a given environment. How viral fitness can influence the mutant spectrum complexity of a viral quasispecies subjected to lethal mutagenesis has not been investigated. Here we document that two high fitness hepatitis C virus populations display higher resistance to the mutagenic nucleoside analogues favipiravir and ribavirin than their parental, low fitness HCV. All populations, however, exhibited a mutation transition bias indicative of active mutagenesis. Resistance to the analogues was associated with a limited expansion of mutant spectrum complexity, as evidenced by several diversity indices used to characterize mutant spectra. The results are consistent with a replicative site-drug competition mechanism that was previously proposed for HCV fitness-associated resistance to non-mutagenic inhibitors. Other alternative, non-mutually exclusive mechanisms are considered. The results introduce viral fitness as a relevant parameter to evaluate the response of viruses to lethal mutagenesis, with implications for antiviral designs.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Mutagênese , Pirazinas/farmacologia , Ribavirina/farmacologia , Linhagem Celular Tumoral , Aptidão Genética/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Mutação , Inoculações Seriadas
13.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875244

RESUMO

One unexplored aspect of HIV-1 genetic architecture is how codon choice influences population diversity and evolvability. Here we compared the levels of development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon-pair-reengineered protease sequence including 38 (13%) synonymous mutations. The WT and MAX viruses showed indistinguishable replication in MT-4 cells or peripheral blood mononuclear cells (PBMCs). Both viruses were subjected to serial passages in MT-4 cells, with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32 successive passages, both the WT and MAX viruses developed phenotypic resistance to PIs (50% inhibitory concentrations [IC50s] of 14.6 ± 5.3 and 21.2 ± 9 nM, respectively, for ATV and 5.9 ± 1.0 and 9.3 ± 1.9, respectively, for DRV). Ultradeep sequence clonal analysis revealed that both viruses harbored previously described mutations conferring resistance to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires, with the G16E and V77I substitutions observed only in the WT and the L33F, S37P, G48L, Q58E/K, and L89I substitutions detected only in the MAX virus. Remarkably, the G48L and L89I substitutions are rarely found in vivo in PI-treated patients. The MAX virus showed significantly higher nucleotide and amino acid diversity of the propagated viruses with and without PIs (P < 0.0001), suggesting a higher selective pressure for change in this recoded virus. Our results indicate that the HIV-1 protease position in sequence space delineates the evolution of its mutant spectrum. Nevertheless, the investigated synonymously recoded variant showed mutational robustness and evolvability similar to those of the WT virus.IMPORTANCE Large-scale synonymous recoding of virus genomes is a new tool for exploring various aspects of virus biology. Synonymous virus genome recoding can be used to investigate how a virus's position in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease affects the development of protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus and a virus with recoded protease exhibited different patterns of resistance mutations after PI treatment. Nevertheless, the developed PI resistance phenotypes were indistinguishable between the recoded virus and the WT virus, suggesting that the HIV-1 strain with synonymously recoded protease and the WT virus are equally robust and evolvable.


Assuntos
Farmacorresistência Viral , Evolução Molecular , Protease de HIV/genética , HIV/efeitos dos fármacos , HIV/fisiologia , Mutação de Sentido Incorreto , Mutação Silenciosa , Células Cultivadas , HIV/genética , Humanos , Linfócitos/virologia , Nucleotídeos/genética , Inoculações Seriadas , Replicação Viral
14.
World J Gastroenterol ; 24(19): 2095-2107, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29785078

RESUMO

AIM: To detect hyper-conserved regions in the hepatitis B virus (HBV) X gene (HBX) 5' region that could be candidates for gene therapy. METHODS: The study included 27 chronic hepatitis B treatment-naive patients in various clinical stages (from chronic infection to cirrhosis and hepatocellular carcinoma, both HBeAg-negative and HBeAg-positive), and infected with HBV genotypes A-F and H. In a serum sample from each patient with viremia > 3.5 log IU/mL, the HBX 5' end region [nucleotide (nt) 1255-1611] was PCR-amplified and submitted to next-generation sequencing (NGS). We assessed genotype variants by phylogenetic analysis, and evaluated conservation of this region by calculating the information content of each nucleotide position in a multiple alignment of all unique sequences (haplotypes) obtained by NGS. Conservation at the HBx protein amino acid (aa) level was also analyzed. RESULTS: NGS yielded 1333069 sequences from the 27 samples, with a median of 4578 sequences/sample (2487-9279, IQR 2817). In 14/27 patients (51.8%), phylogenetic analysis of viral nucleotide haplotypes showed a complex mixture of genotypic variants. Analysis of the information content in the haplotype multiple alignments detected 2 hyper-conserved nucleotide regions, one in the HBX upstream non-coding region (nt 1255-1286) and the other in the 5' end coding region (nt 1519-1603). This last region coded for a conserved amino acid region (aa 63-76) that partially overlaps a Kunitz-like domain. CONCLUSION: Two hyper-conserved regions detected in the HBX 5' end may be of value for targeted gene therapy, regardless of the patients' clinical stage or HBV genotype.


Assuntos
Terapia Genética/métodos , Vírus da Hepatite B/genética , Hepatite B Crônica/terapia , Transativadores/genética , Regiões 5' não Traduzidas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Viral/genética , DNA Viral/isolamento & purificação , Feminino , Antígenos E da Hepatite B/imunologia , Antígenos E da Hepatite B/isolamento & purificação , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/sangue , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Interferente Pequeno/uso terapêutico , Alinhamento de Sequência , Análise de Sequência de DNA , Transativadores/isolamento & purificação , Proteínas Virais Reguladoras e Acessórias
15.
World J Gastroenterol ; 24(6): 680-692, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29456407

RESUMO

AIM: To determine the variability/conservation of the domain of hepatitis B virus (HBV) preS1 region that interacts with sodium-taurocholate cotransporting polypeptide (hereafter, NTCP-interacting domain) and the prevalence of the rs2296651 polymorphism (S267F, NTCP variant) in a Spanish population. METHODS: Serum samples from 246 individuals were included and divided into 3 groups: patients with chronic HBV infection (CHB) (n = 41, 73% Caucasians), patients with resolved HBV infection (n = 100, 100% Caucasians) and an HBV-uninfected control group (n = 105, 100% Caucasians). Variability/conservation of the amino acid (aa) sequences of the NTCP-interacting domain, (aa 2-48 in viral genotype D) and a highly conserved preS1 domain associated with virion morphogenesis (aa 92-103 in viral genotype D) were analyzed by next-generation sequencing and compared in 18 CHB patients with viremia > 4 log IU/mL. The rs2296651 polymorphism was determined in all individuals in all 3 groups using an in-house real-time PCR melting curve analysis. RESULTS: The HBV preS1 NTCP-interacting domain showed a high degree of conservation among the examined viral genomes especially between aa 9 and 21 (in the genotype D consensus sequence). As compared with the virion morphogenesis domain, the NTCP-interacting domain had a smaller proportion of HBV genotype-unrelated changes comprising > 1% of the quasispecies (25.5% vs 31.8%), but a larger proportion of genotype-associated viral polymorphisms (34% vs 27.3%), according to consensus sequences from GenBank patterns of HBV genotypes A to H. Variation/conservation in both domains depended on viral genotype, with genotype C being the most highly conserved and genotype E the most variable (limited finding, only 2 genotype E included). Of note, proline residues were highly conserved in both domains, and serine residues showed changes only to threonine or tyrosine in the virion morphogenesis domain. The rs2296651 polymorphism was not detected in any participant. CONCLUSION: In our CHB population, the NTCP-interacting domain was highly conserved, particularly the proline residues and essential amino acids related with the NTCP interaction, and the prevalence of rs2296651 was low/null.


Assuntos
DNA Viral/genética , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Precursores de Proteínas/genética , Adulto , Idoso , DNA Viral/isolamento & purificação , Feminino , Genótipo , Antígenos de Superfície da Hepatite B/isolamento & purificação , Antígenos de Superfície da Hepatite B/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Polimorfismo de Nucleotídeo Único , Precursores de Proteínas/isolamento & purificação , Precursores de Proteínas/metabolismo , Análise de Sequência de DNA , Espanha , Simportadores/metabolismo
16.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275194

RESUMO

Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment.IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments.


Assuntos
Carcinoma Hepatocelular/virologia , Evolução Molecular , Hepacivirus/genética , Hepacivirus/fisiologia , Replicação Viral , Adaptação Biológica/genética , Replicação do DNA , Genoma Viral , Hepacivirus/classificação , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fígado/virologia , Mutação , Fenótipo , RNA Viral/genética
17.
Transfusion ; 57(2): 244-247, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27785789

RESUMO

BACKGROUND: Acute hepatitis E in industrialized countries is usually related to intake or manipulation of undercooked or raw meat. Cases of transfusion-transmitted hepatitis E have rarely been documented in immunosuppressed patients, mainly after receiving frozen plasma. STUDY DESIGN AND METHODS: A 61-year-old man was admitted to hospital for jaundice. His personal history included disseminated bacillus Calmette-Guerin infection treated with antituberculous drugs. He had received red blood cell (RBC) transfusion 2 months previously, during admission for mycotic aneurysm surgery. Since liver function tests worsened despite stopping antituberculous drugs, other causes of acute hepatitis were explored. RESULTS: Acute hepatitis E was diagnosed by the presence of both immunoglobulin M and hepatitis E virus (HEV) RNA. Traceback procedure for the 8 RBC units was carried out, and one of the eight archive plasma samples tested positive for HEV RNA, with an estimated viral load of 75,000 IU/mL. Phylogenetic analysis revealed the same HEV strain Genotype 3 in one of the transfused RBC products and in the patient's serum sample. CONCLUSION: Transfusion of RBCs with detectable HEV RNA is a risk factor for acute hepatitis E in immunocompetent patients in Europe.


Assuntos
Anticorpos Antivirais/sangue , Transfusão de Eritrócitos , Vírus da Hepatite E/genética , Hepatite E , Mycobacterium bovis , RNA Viral , Tuberculose , Doença Aguda , Aneurisma Infectado/sangue , Aneurisma Infectado/microbiologia , Aneurisma Infectado/terapia , Hepatite E/sangue , Hepatite E/etiologia , Hepatite E/genética , Hepatite E/transmissão , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , RNA Viral/genética , Tuberculose/sangue , Tuberculose/microbiologia , Tuberculose/terapia
18.
J Clin Microbiol ; 55(2): 504-509, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27927921

RESUMO

The unequivocal identification of hepatitis C virus (HCV) subtypes 1a/1b and genotypes 2 to 6 is required for optimizing the effectiveness of interferon-free, direct-acting antiviral therapies. We compared the performance of a new real-time HCV genotyping assay used on the Cobas 4800 system (C4800) with that of high-resolution HCV subtyping (HRCS). In total, 502 samples were used, including 184 samples from chronic HCV patients (from routine laboratory activity during April 2016), 5 stored samples with double HCV genotype infections for testing the limitations of the method, and 313 samples from a screening protocol implemented in our hospital (from May to August 2016) based on the new method to further determine its genotyping accuracy. A total of 282 samples, including 171 from April 2016 (the 13 remaining had too low of a viral load for HRCS), 5 selected with double infections, and 106 from screening, were analyzed by both methods, and 220 were analyzed only by the C4800. The C4800 correctly subtyped 125 of 126 1a/1b samples, and the 1 remaining sample was reported as genotype 1. The C4800 correctly genotyped 38 of 45 non-1a/1b samples (classified by HRCS), and it reported the remaining 7 samples as indeterminate. One hundred two of 106 non-1a/1b genotype samples that were identified using the C4800 for screening were confirmed by HRCS. In the 4 remaining samples, 3 were correctly reported as genotype 1 (without defining the subtype) and 1 was reported as indeterminate. None of the samples were misgenotyped. Four of 7 samples with double HCV infections were correctly genotyped by the C4800. Excluding the 5 selected double-infected samples, the C4800 showed 95.7% concordant results for genotyping HCVs 2 to 6 and 1a/1b subtyping, and 99.2% concordance for subtyping 1a/1b single infections in clinical samples. To improve laboratory workflow, we propose using the C4800 as a first-line test for HCV genotyping and 1a/1b classification, followed by transferring non-1a/1b samples to a center where HRCS is available, if further characterization is needed.


Assuntos
Automação Laboratorial/métodos , Técnicas de Genotipagem/métodos , Hepacivirus/classificação , Hepacivirus/genética , Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA/métodos , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/virologia , Humanos , Estudos Prospectivos
19.
PLoS One ; 11(10): e0164691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27755573

RESUMO

Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagen. Here we show that favipiravir (T-705) is a potent mutagenic agent for hepatitis C virus (HCV) during its replication in human hepatoma cells. T-705 leads to an excess of G → A and C → U transitions in the mutant spectrum of preextinction HCV populations. Infectivity decreased significantly in the presence of concentrations of T-705 which are 2- to 8-fold lower than its cytotoxic concentration 50 (CC50). Passaging the virus five times in the presence of 400 µM T-705 resulted in virus extinction. Since T-705 has undergone advanced clinical trials for approval for human use, the results open a new approach based on lethal mutagenesis to treat hepatitis C virus infections. If proven effective for HCV in vivo, this new anti-HCV agent may be useful in patient groups that fail current therapeutic regimens.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Pirazinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA Viral/química , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Análise de Sequência de RNA , Replicação Viral/efeitos dos fármacos
20.
Antimicrob Agents Chemother ; 60(6): 3786-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067341

RESUMO

Sofosbuvir displays a high phenotypic barrier to resistance, and it is a component of several combination therapies for hepatitis C virus (HCV) infections. HCV fitness can be a determinant of decreased sensitivity to direct-acting antiviral agents such as telaprevir or daclatasvir, but fitness-dependent decreased drug sensitivity has not been established for drugs with a high phenotypic barrier to resistance. Low- and high-fitness HCV populations and biological clones derived from them were used to infect Huh-7.5 hepatoma cells. Sofosbuvir efficacy was analyzed by measuring virus progeny production during several passages and by selection of possible sofosbuvir resistance mutations determined by sequencing the NS5B-coding region of the resulting populations. Sofosbuvir exhibited reduced efficacy against high-fitness HCV populations, without the acquisition of sofosbuvir-specific resistance mutations. A reduced sofosbuvir efficacy, similar to that observed with the parental populations, was seen for high-fitness individual biological clones. In independently derived high-fitness HCV populations or clones passaged in the presence of sofosbuvir, M289L was selected as the only substitution in the viral polymerase NS5B. In no case was the sofosbuvir-specific resistance substitution S282T observed. High HCV fitness can lead to decreased sensitivity to sofosbuvir, without the acquisition of specific sofosbuvir resistance mutations. Thus, fitness-dependent drug sensitivity can operate with HCV inhibitors that display a high barrier to resistance. This mechanism may underlie treatment failures not associated with selection of sofosbuvir-specific resistance mutations, linked to in vivo fitness of pretreatment viral populations.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/genética , Linhagem Celular Tumoral , Células Clonais , Expressão Gênica , Aptidão Genética , Genótipo , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Oligopeptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA